Exploit Clues from Views: Self-Supervised and Regularized Learning for Multiview Object Recognition

Chih-Hui Ho, Bo Liu, Tz-Ying Wu, Nuno Vasconcelos University of California, San Diego

Introduction

• Multiview recognition has been well studied in the literature and achieves decent performance in object recognition and retrieval task. For example,

MVCNN

Triplet center loss

RotationNet

Introduction

• However, most previous works rely on some impractical assumptions.

Introduction

- These limitations prevent many applications of interest.
- For example, a household robot of limited memory is tasked with picking scattered objects and returning them to their locations.
- The model needs to generalize to unseen objects and views during inference.

UC San Diego

Pretrained stage

Methods

- A baseline is to train a softmax classifier on seen objects and encourage views of an object clustering around its prototype.
- However, the softmax classifier is successful only on seen objects and unable to generalize to unseen objects.

i

$$P_{Y|X}(i|x) = \frac{\exp[W_i^T f_{\theta}(x))}{\sum_{k=1}^N \exp(W_k^T f_{\theta}(x))},$$

w_i is the parameter vector of object

Methods

- We propose to replace the classifier weight with the normalized embedding of a randomly chosen object view for better generalization.
- This is referred as multiview stochastic prototype embedding (MVSPE).

Methods

• The probability shift of choosing different view (prototype) set is minimized with KL divergence and leads to our final **view invariant stochastic prototype embedding (VISPE)**. $L_{KL} = \sum_{i=1}^{m} P_{Y|X}^{s_1}(i|x) \log \frac{P_{Y|X}^{s_1}(i|x)}{P_{V|V}^{s_2}(i|x)}$

UC San Diego

Experiment

Datasets	Surrogate	ModelNet		ShapeNet		ModelNet-S	
Methods / Classes	Task	seen	unseen	seen	unseen	seen	unseen
Chance	N/A	3.3	10.0	3.3	4.0	3.3	10.0
Pretrained [1]	N/A	62.7	52.7	63.9	58.1	58.2	55.2
Autoencoder [2]	Context	31.8	37.2	29.8	26.3	34.7	38.8
Egomotion [3]	Motion	32.4	34.7	72.6	47.1	33.0	35.2
Puzzle [4]	Sequence	34.4	41.5	67.8	48.6	34.8	42.4
UEL [5]	Data Aug.	47.9	46.5	68.7	53.4	46.4	48.2
ShapeCode [6]	View	39.4	46.5	67.1	42.3	38.8	47.2
MVCNN [7]	N/A	39.6	48.1	30.3	32.4	36.7	44.8
Triplet [8]	N/A	70.1	62.4	81.2	61.2	64.7	62.1
Instance classifier	N/A	57.7	58.9	69.3	60.4	52.3	54.6
PE	Object	69.7	61.7	81.6	63.8	62.1	60.4
MVSPE	Object	70.3	63.2	82.4	64.6	64.6	62.1
VISPE	Object	71.2	64.4	82.9	65.5	66.2	64.3

Outperform baselines for object recognition on seen and unseen classes

Faster convergence

Better embedding structure

Thank you for listening

Code available at https://github.com/chihhuiho/VISPE

< UC San Diego